Appendix P

ARCHITECTURE AND CONSTRUCTION YOUTH APPRENTICESHIP

DESIGN/PRE-CONSTRUCTION PATHWAY ARCHITECTURAL DRAFTING (UNIT 9)

Competency

1. Interpret technical drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Interpret technical drawings accurately as needed for job task
- Use appropriate terminology
- · Identify basic elements of technical drawings
- Identify lines, views, symbols, and representations on the drawings as applicable
- Interpret dimensions and scale on the drawings as applicable
- Utilize a metric scale to properly read a drawing

Learning Objectives:

- Discuss different types of architectural technical drawings
- Define the basic types of lines
- Define and explain the use of lines, views, symbols, dimensions, and scale on architectural technical drawings
- Identify different lines by name, type, order of usage and application such as object, hidden, center, section, dimension, extension, cutting plane, short break, long break, phantom
- Demonstrate standard view placement practices
- Compare pictorial format, orthographic projection, sectional views, and detail schedules
- Discuss the ANSI and AIA standards for architectural document lines
- Describe the standard usage of metric (SI) linear units in architectural drafting

Competency

2. Use measuring devices accurately

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Choose appropriate instrument or aid for measuring task
- Verify instrument is accurate for calibration if applicable
- Use and/or measure as required
- Read measuring instrument accurately
- Scale proportions accurately
- Apply appropriate formula and units for measurements
- Record measurements using proper symbols
- Clean and maintain instrument(s) as required
- Store instrument(s) properly

Learning Objectives:

- List drafting aids and measuring devices commonly used by architects
- List common measurements used by architects
- Add and subtract measurements
- Discuss how to convert standard English measures to metric and vice versa
- Explain architectural scale
- Explain the impact of error in measurement
- Predict the effect of error propagation in calculations
- Explain the link between measurement, calculation and data with the correct number of significant digits

Competency

3. Organize databases, files and drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Select appropriate documents
- Code documents as required
- Save and store drawings and files to appropriate database
- Sort and retrieve drawings and data from databases
- Enter data and edit fields and documents
- Query to extract information from files and documents
- Create reports from queries
- Use appropriate computer codes, formatting, macros, charts, spreadsheets, etc.
- Verify data prior to entry/storage

Learning Objectives:

- Define basic database terms such as database, field, record, query, table, etc.
- Identify the various types of data and documents stored in your companies database management system
- Discuss the access and responsibilities you will have for managing architectural records and documents

Competency

4. Reproduce documents and plans

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain documents or plans
- Remove any staples if hard copy
- Save copies to computer storage devices
- Operate copy machines
- Operate printers, plotters, and scanners
- Number copies as required
- Document copies made

Learning Objectives:

- Explain the purpose of copy control and plan numbering systems
- Explain the size of drawings to standards
- Define U.S. customary architectural drawing sizes
- Define aspect ratio and how it applies to drawing sizes and copying
- Describe how to operate the computer database storage system, copy machine, printer, scanner, etc. at your facility

Competency

5. Compile site measurements and other date

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain survey information on building site from documented resources and survey measurements for architectural plans, specifications, cost estimates, reports, etc.
- Assist to research codes and site requirements
- Identify the boundaries of a property based on its legal description
- Visit site to gather information pertinent to the viability of a project on the site
- Assist to measure building or lot if required
 - Take measurements of structures, distances, length, width, height, perimeter, and area
 - Determine elevations and contour lines
 - Establish a point of known elevation for a project
 - o Read gauges and measurement instruments accurately
 - Document measurements accurately
- Identify measurements and elevations
- Use and report measurements correctly
- Schedule or conduct land/utility surveys
 - Arrange for evaluation of basic service and utility systems available including service capacity, service entrance, meter base, and distribution panel locations
 - o Arrange for geological and geophysical investigations
 - \circ $\;$ Obtain soil samples and send for analysis $\;$
 - Arrange studies of water and utility needs
 - o Arrange studies of air, water and solid waste pollution impact
 - Conduct studies of traffic patterns or environmental conditions to assess the potential impact of projects
 - Arrange for plant location surveys
 - Arrange for topographical surveys

Learning Objectives:

- Explain how to identify the boundaries of a property based on legal description
- Discuss the impact of zoning in site selection
- Explain how maps and aerial photos are used in site determination and measurement
- Explain how property lines, utilities, building line, setback, building corners, and elevation are indicated in land maps
- Explain general survey methods used to obtain site measurements
- Describe how elevation reference points and footing grades are established
- Discuss how GIS (Geographic Information Systems), GPS (Global Positioning Systems), and lasers are used to measure sites
- Describe criteria for building site selection
- List soil characteristics important to the design and construction of a building according

to the United Soil Classification System designation

- Describe the impact of passive energy, sustainability and landscaping on site selection
- Discuss hazards specific to building sites
- Discuss common methods for site preparation
- Explain the process for demolition of old structures prior to repair or new construction

Competency

6. Use architectural drafting software

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain and use appropriate reference materials
- Access and use appropriate file management to search, create, copy, edit, and save drawing files
- Execute application software
- Demonstrate view use in CAD
- Retrieve or create
 - o Access predefined drawing setup
 - Import/export drawings from/to various graphic formats
 - Convert an existing hard copy drawing to an electronic format
- Draw or modify drawings
 - o Utilize drawing management standards
 - Set up plot parameter
 - Select appropriate scale
 - Utilize various coordinate systems
 - Apply appropriate naming conventions, line types, and object management to drawing
 - o Apply appropriate notes and/or leaders to drawing
 - Apply appropriate lettering, fonts, line thickness and type
- Check drawing
- Maintain drawings in appropriate project family in the file management system

Learning Objectives:

- Explain the purpose, principle, and advantages of Computer-Aided Drawing (CAD)
- Compare cost, advantages, and disadvantages of CAD versus Manual drawing
- Compare types of CAD used in Architecture, such as Revit
- Identify drafting references, handbooks, vendor's product catalog, and other related appropriate standards and how they are used in architectural drafting
- List appropriate architectural design standards used by your facility
- Describe the hardware components commonly found in a CAD workstation- the computer, the digitizer, and plotters and printers
- Compare architectural symbols, text based information, and libraries in the CAD software used in your facility
- Describe the feature manager design tree schematic for the CAD software you will use
- Discuss CAD plotting guidelines
- Define BIM and BIM features in architectural software, such as Revit

Competency

7. Develop 2D (orthographic) view drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use architectural drafting software OR draw manually
- Select proper views
- Identify types of lines to be used
- Determine and utilize line precedence
- Draw geometric shapes such as circles, polygons, ellipses, parabola, triangles of various angles, tangent lines, and arcs as needed
- Construct an orthographic drawing
- Show hidden features and centerlines as required
- Complete title block by selecting lettering style and size
- Apply proper thickness to all lines
- Check drawing
- Label and save to appropriate project family

Learning Objectives:

- Explain the alphabet of lines for drawing
- Explain the three dimensions and how they are represented for width, depth, and height
- Describe projection rules to create 2D sketches of 3D objects
- Define orthographic view
- Explain the purpose of orthographic views
- Compare types of 2D views
- Discuss the line types used in orthographic views
- Explain how orthographic projections are used in architecture
- Explain how to draw orthographic views and geometric constructions
- Identify common geometric shapes and forms by name
- List formulas used in geometric constructions

Competency

8. Develop 3D view models

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use architectural drafting software OR draw manually
- Select proper view
- Lay out view corner
- Identify types of lines to be used
- Determine and utilize line precedence
- Draw 3D view models
- Show hidden features and centerlines as required
- Complete title block by selecting lettering style and size
- Apply proper thickness to all lines
- Check drawing
- Label and save to appropriate project family

Learning Objectives:

- Compare 2D (orthographic) views to 3D model views
- Explain how the viewing direction for a 3D model is chosen
- Explain how to draw 3D models
- Explain the purpose of 3D model views
- Discuss the line types used in 3D model views

Competency

9. Dimension drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use architectural drafting software OR draw manually
- Select views to be dimensioned
- Dimension views
 - o Draw dimension lines
 - o Dimension views using appropriate style of dimensioning
- Continue until all features have been dimensioned
- Dimension complex shapes when appropriate (e.g., spheres, cylinders, tapers, pyramids)
- Apply appropriate line thickness and type to dimension, extension, and center lines
- Check drawing

Learning Objectives:

- Define proportion
- Explain architectural scale
- Describe how scales are indicated on technical drawings
- Define dimensioning in architecture
- Discuss the common rules for architectural dimensioning
- Discuss the basic parts of a dimension
- List common symbols used in dimensioning
- State the standard height of dimension numerals
- Specify common metric scales used in architectural drafting

Competency

10. Apply lettering and basic annotation to drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Use architectural drafting software OR draw manually
- Add lettering
- Draw dimension and extension lines
- Apply adequate drawing notations
- Use appropriate abbreviations
- Apply finish marks
- Check drawing

Learning Objectives:

- Explain the importance of standardized lettering on architectural documents
- List types of architectural lettering
- Discuss common standards to use in lettering
- Discuss when to use dashed lines
- Describe general rules of the use of line weights
- Define annotation
- Explain the purpose of architectural annotations on technical drawings
- List common abbreviations used in annotations in architecture
- Distinguish specific (local) notes and general notes and placement in the drawing

Competency

11. Prepare working drawings

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Obtain & use appropriate reference materials
- Compile site measurements & other data
- Use architectural drafting software OR draw manually
- Draw required view(s) of structures, site layouts, elevations, &/or sections
- Follow guidelines for good drawing techniques
- Draw lines, angles, arcs, circles, and ellipses
- Draw in proportion
- Dimension drawing
- Apply lettering & annotation
- Check drawing

Learning Objectives:

- Describe the purpose of working drawings
- Compare working drawings to final drafts
- Describe the function of bubble drawings and scaled sketches
- Differentiate between the types of working drawings
- Explain the typical sequence in which drawings are created

Competency

12. Assist to research building codes and site requirements

Performance Standard Condition

Competence will be demonstrated

- at the worksite
- while assisting a worksite professional

Performance Standard Criteria

Performance will be successful when learners:

- Review the architectural plan with the worksite professional
- Identify site location, building systems, and structures designated in the architectural plan
- Consult with customers, engineers, construction professionals, landscape architects, environmental scientists and/or government officials
- Determine categories of applicable codes required by site, systems, and structures
- Locate resources to conduct code and site research
- Look up codes, zoning ordinances and regulations to determine the applicable requirements for a project
 - Research Land Use regulations to identify zoning designations and allowable uses of property
- Review research with worksite professional

Learning Objectives:

- Describe the resources and processes to be followed to research required codes and site restrictions at your facility
- Explain the purpose of building codes
- Recognize the potential dangers of built structures, particularly residences that do not follow code
- Identify the national codes typically used in the United States and know who is responsible for determining which code is applied to the design process
- Explain what an occupancy type is
- Classify a building according to its use, occupancy, and construction type using International Building Codes
- Discuss the Wisconsin energy code and code requirements
- Explain the general criteria for domestic light, ventilation, heating, and sanitation requirements
- Delineate the dimensional requirements for doors, halls, stairs, and rooms

Competency

13. Participate on an architectural design project

Performance Standard Condition

Competence will be demonstrated

• at the worksite

Performance Standard Criteria

Performance will be successful when learners:

- Review the scope and phases of the design project with worksite professional
- Participate in the following project team activities to develop and implement the architectural plan as able
 - o Identify customer requirements
 - o Identify contractors and stakeholders required for the project
 - o Develop preliminary sketches
 - o Develop schedules
 - Investigate the legal, physical, and financial requirements of a project and consider the needs of the community to determine project viability
 - Estimate required resources and budget
 - Estimate supply quantities needed from plans
 - o Estimate time requirements
 - o Identify interdependencies
 - o Identify critical milestones
 - Review contractor licenses
 - o Establish and review contracts with contractors
 - o Obtain permits and licenses
 - Coordinate work between trades
 - o Track critical milestones
 - o Track changes to architectural plans and costs
 - Report project status
- · Periodically review architectural plan activities completed and their results

Learning Objectives:

- Explain the sequence of events for constructing buildings
- List the phases of the architectural planning process- initial contact, preliminary design studies, initial working drawings, final design considerations, completion of working drawings, permit procedures, and job supervision
- Explain the role of the engineer in an architectural planning process
- Describe how a building plan is developed from a technical drawing for schedule, materials and equipment
- Determine how construction activities interface with architectural planning
- Explain factors that need to be considered when estimating costs and budget
- Classify costs (e.g., direct and indirect, fixed and variable, methods and standards)
- Apply basic math skills to calculate the quantity and cost of materials needed
- Explain the process for applying for a building permit
- Identify the components of building systems needed to complete a construction project